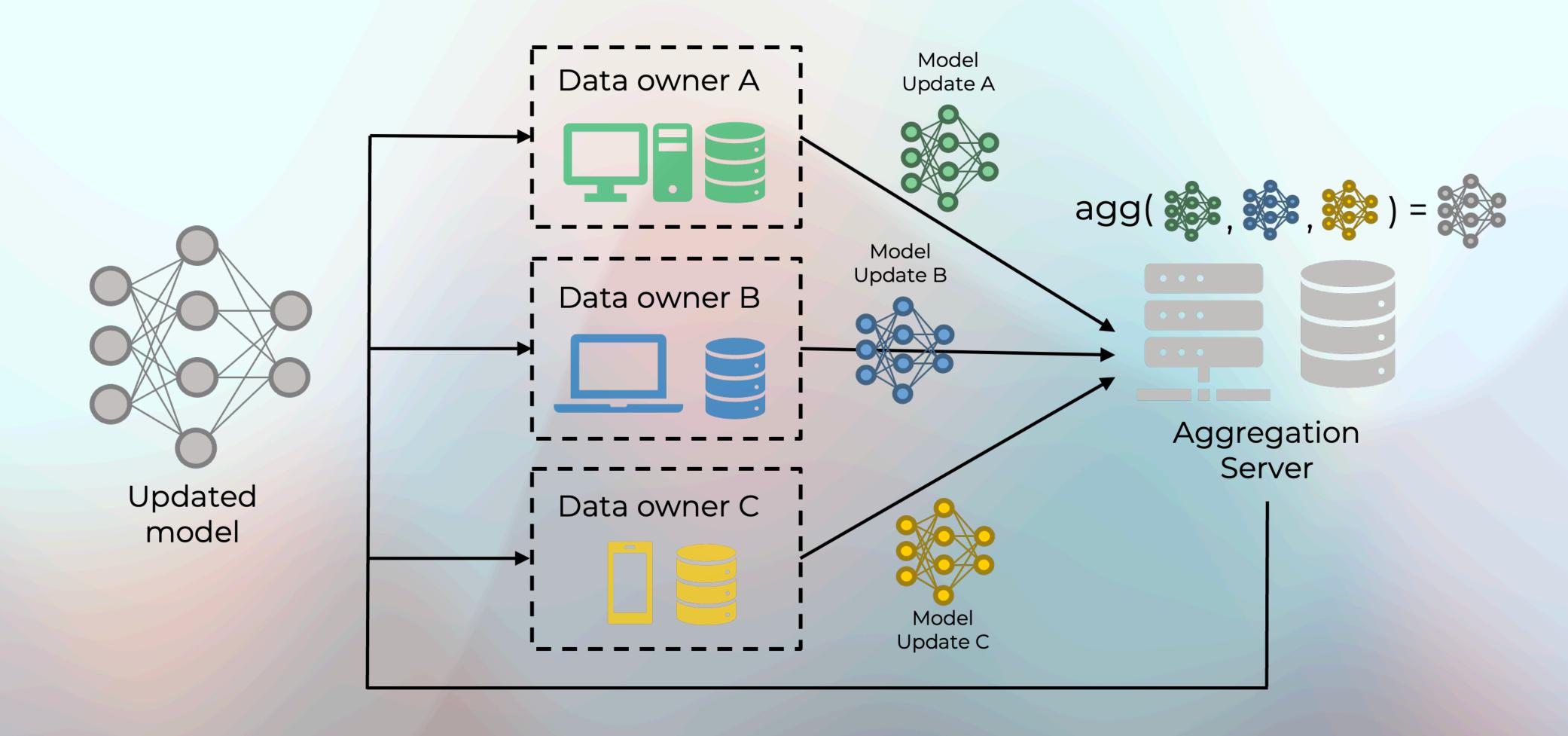


Federated Learning in Healthcare

Challenges and Research Directions

Federated Learning in a nutshell

Centralised FL



Federated Learning & Healthcare An happy marriage

Medical Al Needs Federated Learning, So Will Every Industry

Results published today in Nature Medicine demonstrate that federated learning builds powerful AI models that generalize across healthcare institutions, a finding that shows promise for further applications in energy, financial services, manufacturing and beyond.

September 15, 2021 by MONA FLORES

Federated learning in medicine: facilitating multiinstitutional collaborations without sharing patient data

Micah J. Sheller, Brandon Edwards, G. Anthony Reina, Jason Martin, Sarthak Pati, Aikaterini Kotrotsou, Mikhail Milchenko, Weilin Xu, Daniel Marcus, Rivka R. Colen & Spyridon Bakas ⊡

Scientific Reports 10, Article number: 12598 (2020) Cite this article

Federated learning for predicting clinical outcomes in patients with COVID-19

Ittai Dayan, Holger R. Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gentili, Anas Z. Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J. Wood, Chien-Sung Tsai, Chih-Hung Wang, Chun-Nan Hsu, C. K. Lee, Peiying Ruan, Daguang Xu, Dufan Wu, Eddie Huang, Felipe Campos Kitamura, Griffin Lacey, Gustavo César de Antônio Corradi, Gustavo Nino, Hao-Hsin Shin, Hirofumi Obinata, Hui Ren, ...

Quanzheng Li + Show authors

Nature Medicine 27, 1735–1743 (2021) | Cite this article

Federated learning enables big data for rare cancer boundary detection

Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-Han Wang, G. Anthony Reina, Patrick

Foley, Alexey Gruzdev, Deepthi Karkada, Christos Davatzikos, Chiharu Sako, Satyam Ghodasara, Michel

Bilello, Suyash Mohan, Philipp Vollmuth, Gianluca Brugnara, Chandrakanth J. Preetha, Felix Sahm, Klaus

Maier-Hein, Maximilian Zenk, Martin Bendszus, Wolfgang Wick, Evan Calabrese, Jeffrey Rudie, ...

Spyridon Bakas + Show authors

Nature Communications 13, Article number: 7346 (2022) | Cite this article

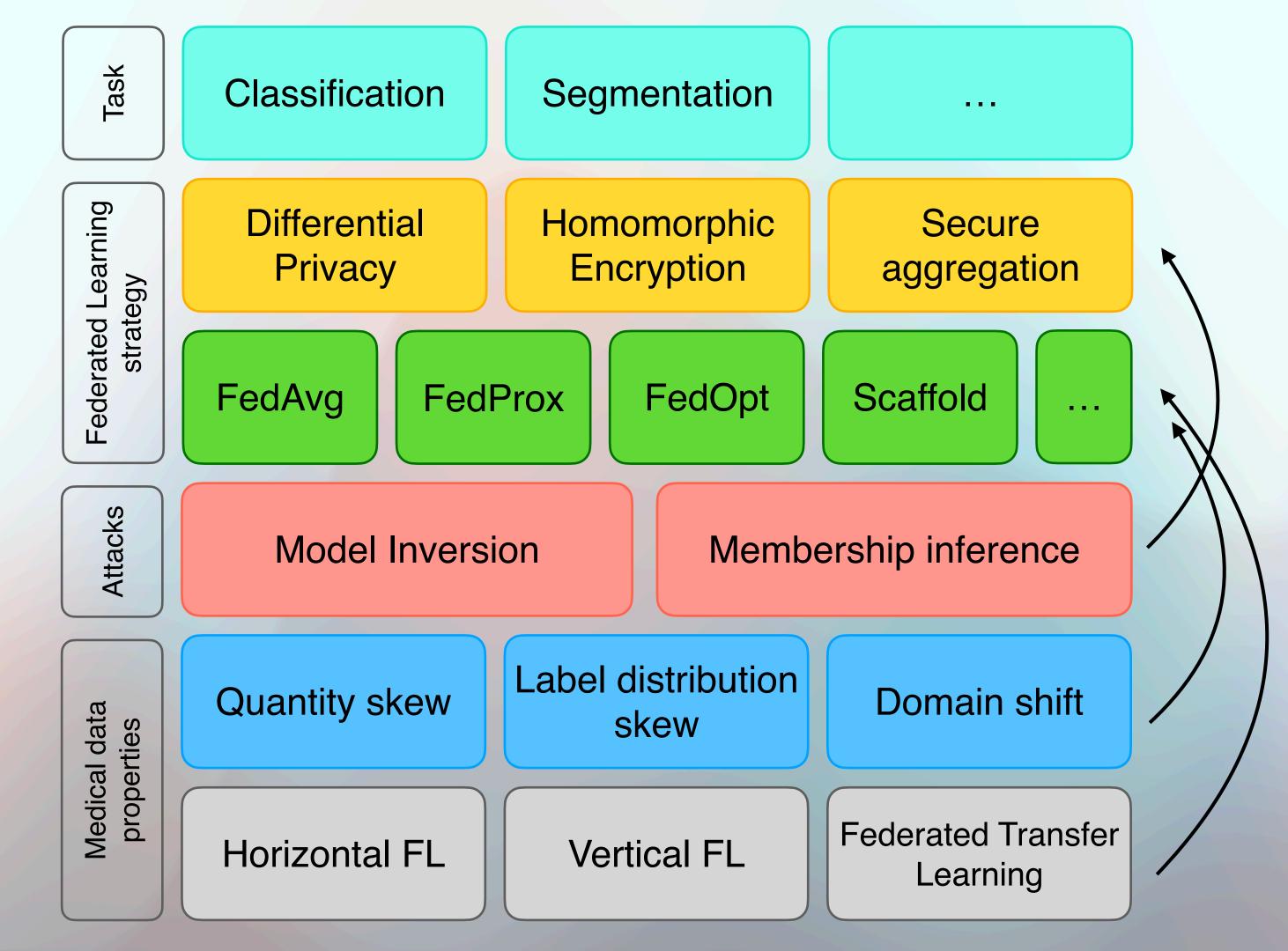
The future of digital health with federated learning

Nicola Rieke ☑, Jonny Hancox, Wenqi Li, Fausto Milletarì, Holger R. Roth, Shadi Albarqouni, Spyridon Bakas, Mathieu N. Galtier, Bennett A. Landman, Klaus Maier-Hein, Sébastien Ourselin, Micah Sheller, Ronald M. Summers, Andrew Trask, Daguang Xu, Maximilian Baust & M. Jorge Cardoso

npj Digital Medicine 3, Article number: 119 (2020) | Cite this article

Federated Learning in Healthcare

The operational stack



Typical FL setting in healthcare

(Centralised) Cross-silo FL

Few institutions (<50)

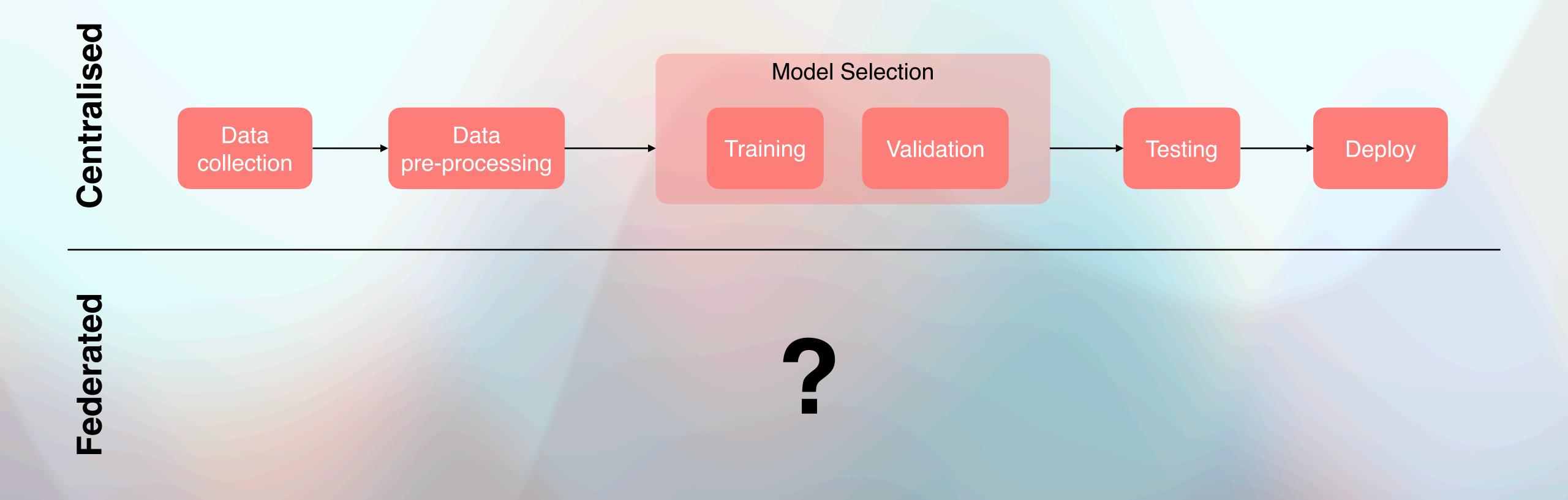
Stable connectivity

Relatively big datasets

Reliability

Federated Learning in Healthcare

From centralised to federated: Challenges & Research directions



Non-iid data distribution

Model Selection

Challenge

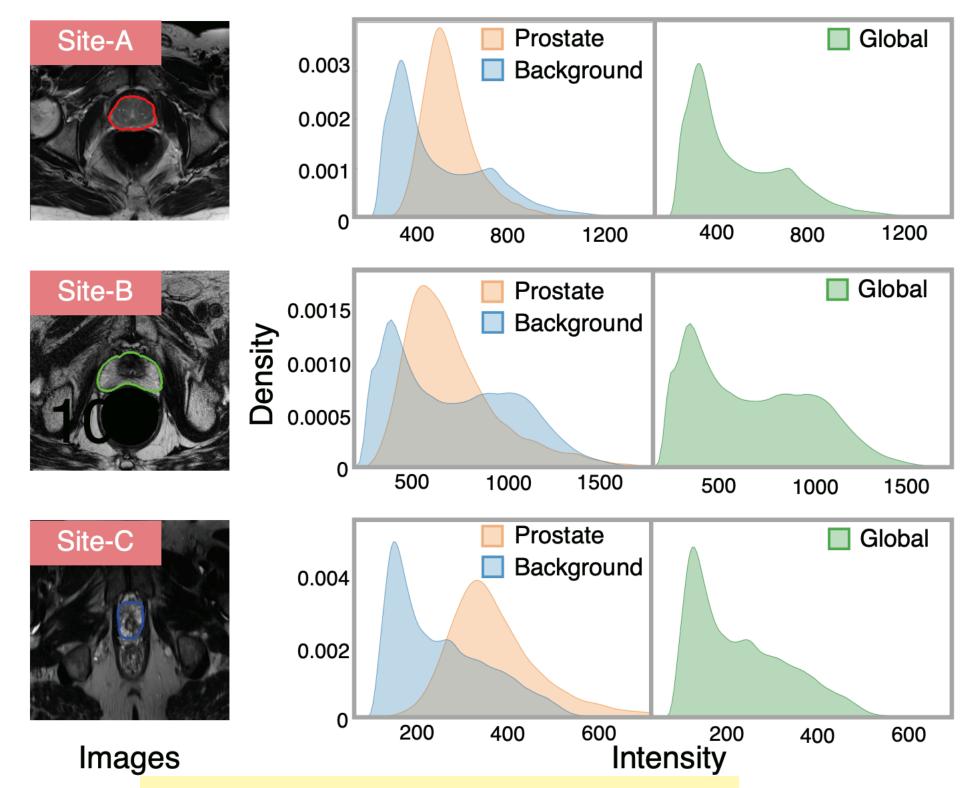
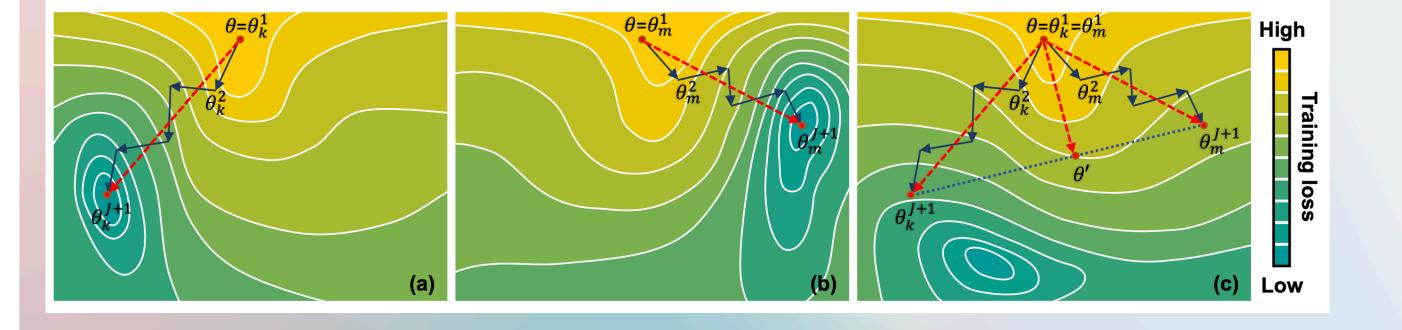
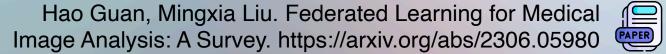


Figure 3: Domain shift among different medical sites. Region-wise and global intensity distribution of different sites for prostate MR images. Image courtesy to Xiao et al. (Xiao et al., 2022).



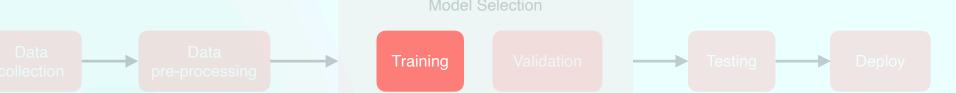
Xu, et al. Federated Cross Learning for Medical Image Segmentation. MIDL 2023



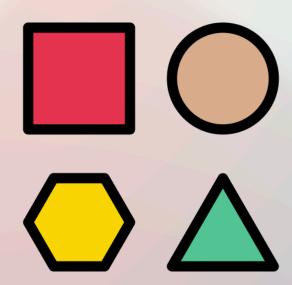
Coordination needed Challenge

- Data must have the same format across institutions, e.g., Fast Healthcare Interoperability Resources (FHIR)*
- Institutions must coordinate to agree upon which data pre-processing steps to perform
- In a Federated setting, some pre-processing operations may behave differently w.r.t. to the centralised setting, e.g., data standardization!

Fast, Robust & Secure training Challenges



Fast

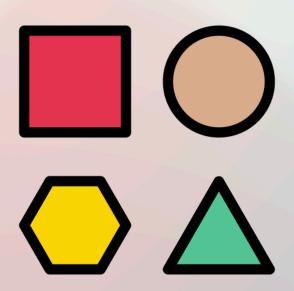


Robust to client heterogeneity

Privacy

Fast, Robust & Secure training Challenges

Fast



Robust to client heterogeneity

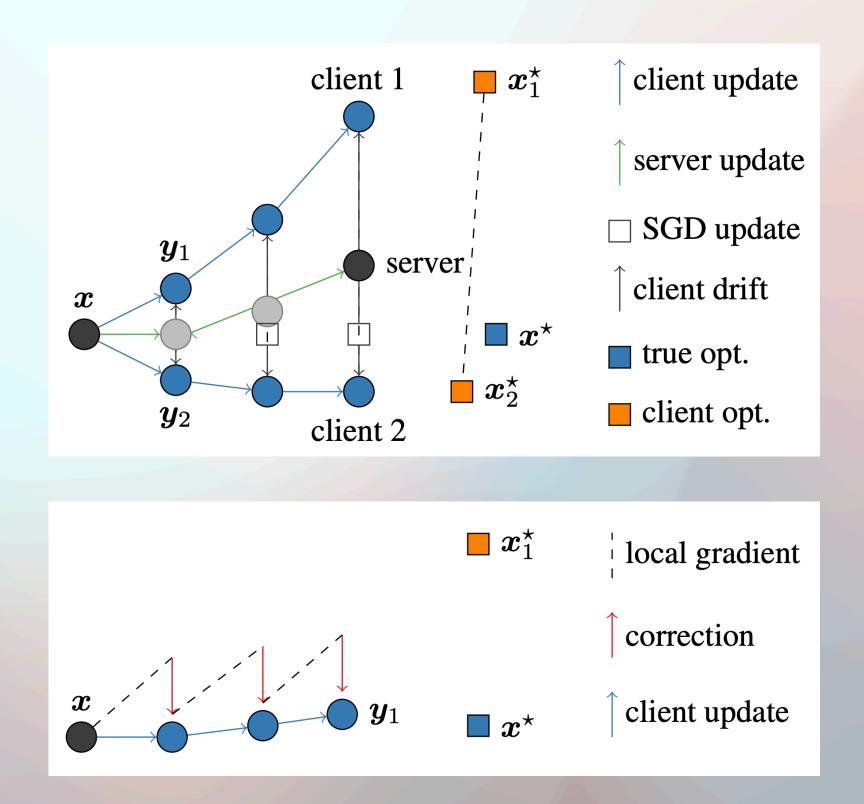
Privacy

Handling non-iid clients

A hot research direction in FL

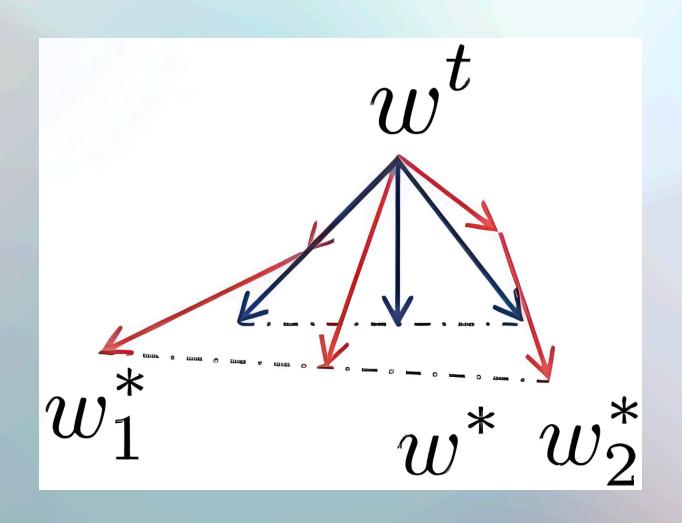
Data collection Data pre-processing Training Validation Deploy

SCAFFOLD



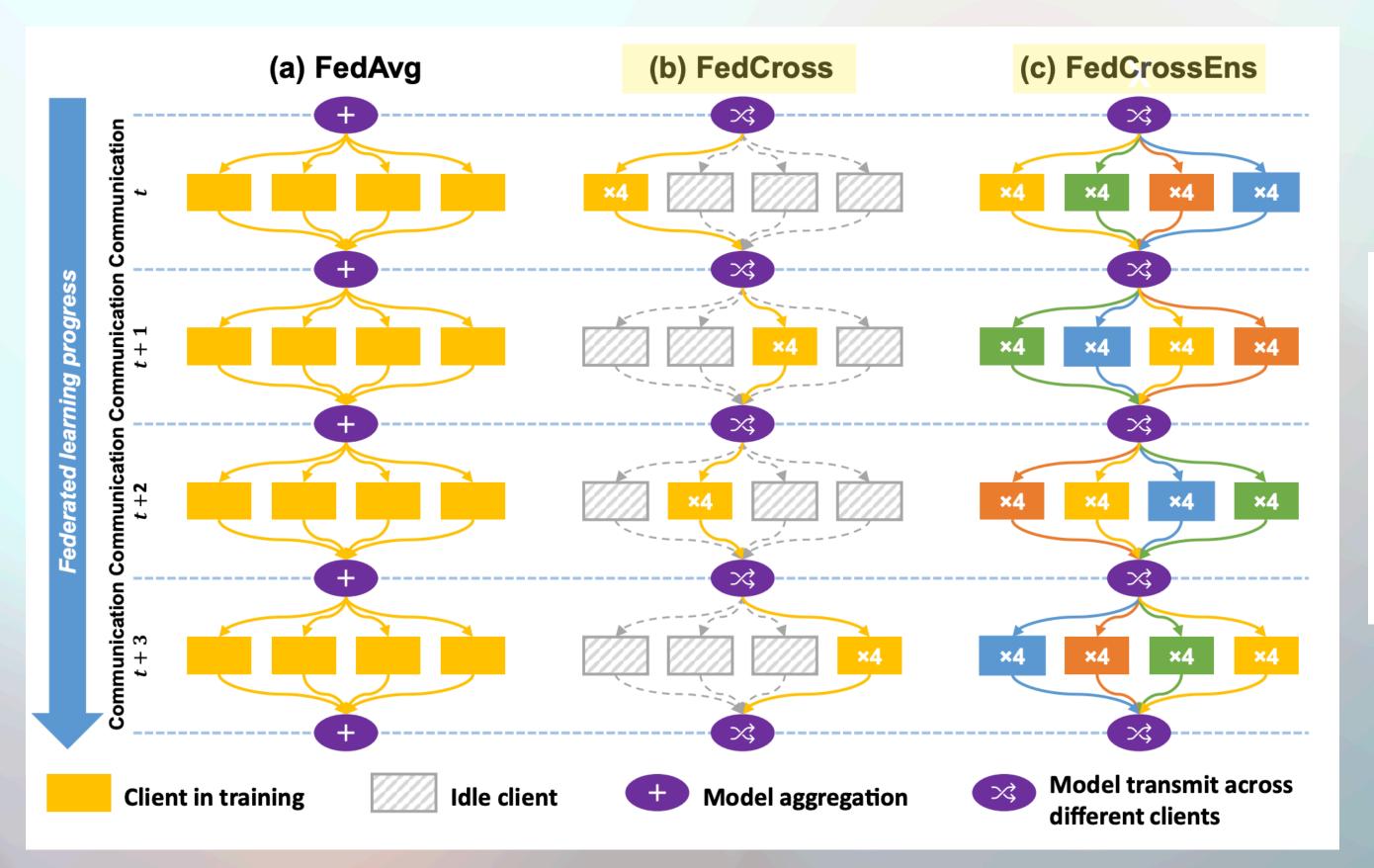
FedProx

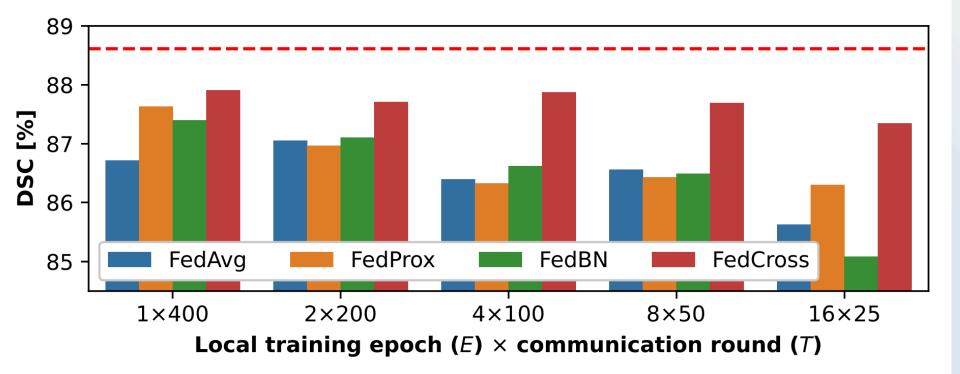
$$\min_{w_k} F_k\left(w_k\right) + \frac{\mu}{2} \left\|w_k - w^t\right\|^2$$



Handling non-iid clients

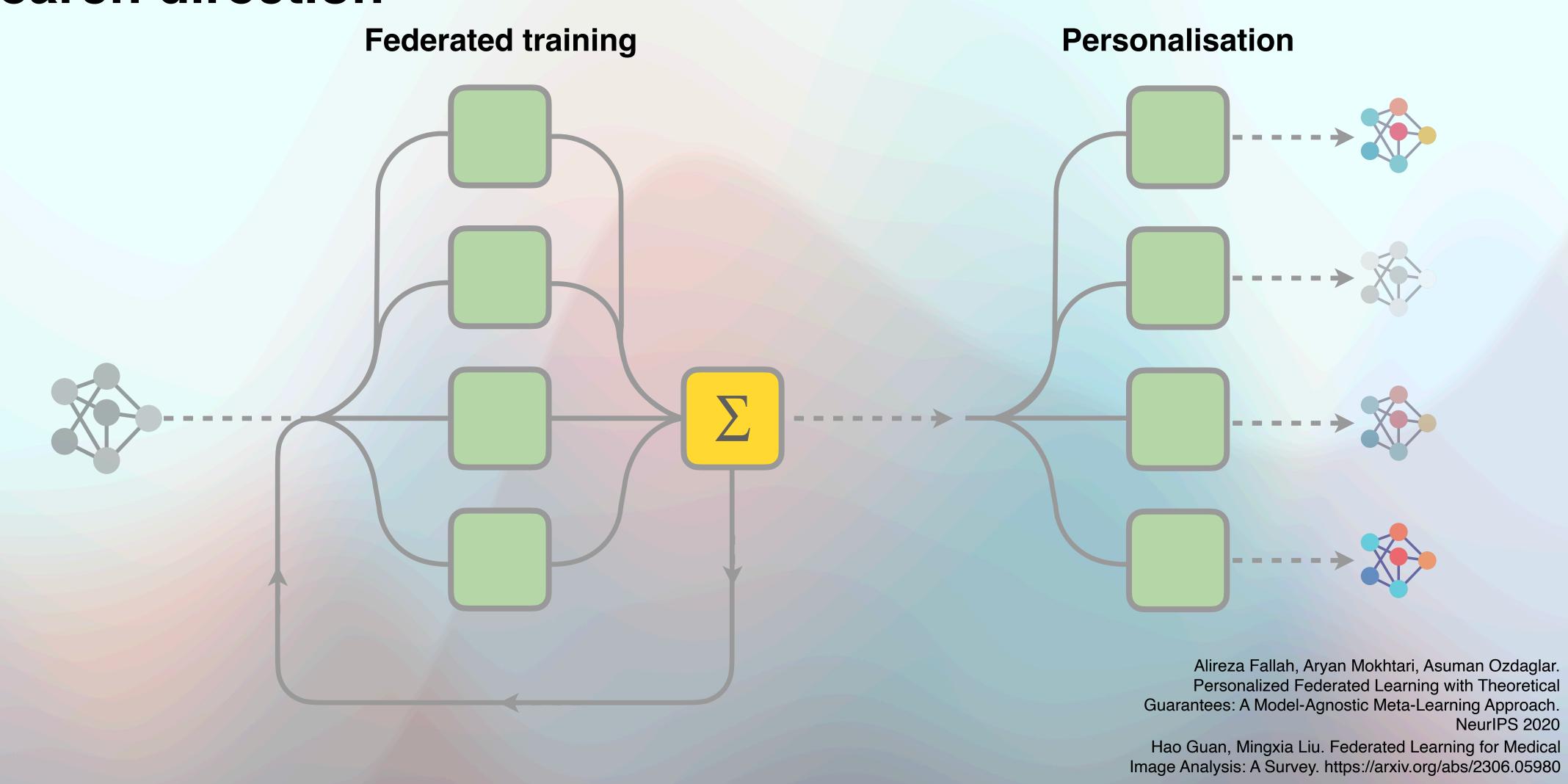
A hot research direction in FL





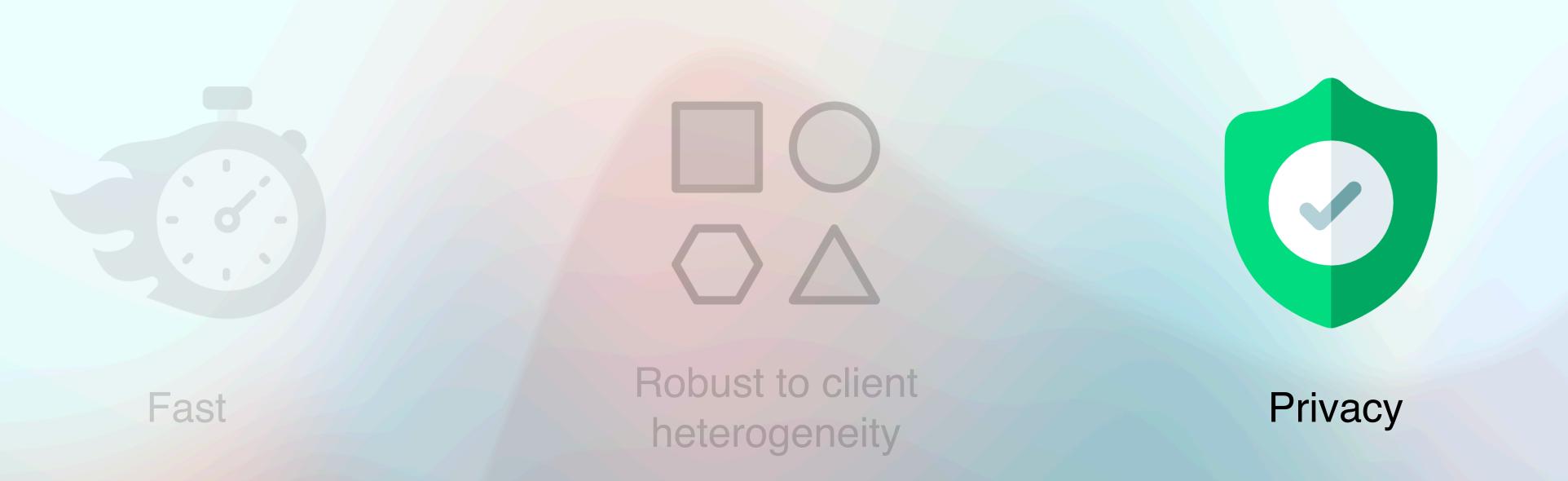
Personalized FL

Research direction



PAPER

Fast, Robust & Secure training Challenges



Differential Privacy

Research direction

DPFed-Post

N total clients, local mini-batch size B, local epochs E, communication rounds T_{cl} , learning rate η , sensitivity S and post-processing parameter P.

Initialize \mathbf{w}_0 and send the model to clients

for
$$r = 1, ... T_{cl}$$

Select K clients randomly

for each selected client k = 1, ..., K

 $\mathbf{w}_k^r \leftarrow \text{ClientUpdate}(k, \mathbf{w}^{r-1})$

 $\Delta \mathbf{w}_k^r \leftarrow \mathbf{w}_k^r - \mathbf{w}^{r-1}$

 $\Delta \hat{\mathbf{w}}_k^r \leftarrow \Delta \mathbf{w}_k^r / \max\left(1, \frac{||\Delta \mathbf{w}_k^r||_2}{S}\right)$

 $\Delta \mathbf{w}^r \leftarrow \frac{\sum_{k=1}^K \Delta \hat{\mathbf{w}}_k^r + \mathcal{G}(0, S\sigma \mathbf{I})}{K}$

 $\Delta \hat{\mathbf{w}}^r \leftarrow \Delta \mathbf{w}^r / \max \left(1, \frac{||\Delta \mathbf{w}^r||_2}{P} \right)$ $\mathbf{w}^r \leftarrow \mathbf{w}^{r-1} + \Delta \hat{\mathbf{w}}^r$

	Data pre-processing		Training	Testing	Deploy

	Non-Private			
Model	Centralized	StdFed		
DeepHit	0.66 ± 0.02	0.67 ± 0.02		
CoxPH	0.66 ± 0.01	0.67 ± 0.03		
CoxCC	0.63 ± 0.02	0.68 ± 0.01		
CoxTime	0.64 ± 0.01	0.67 ± 0.01		
	DeepHit CoxPH CoxCC	$\begin{array}{c c} \text{Model} & \text{Centralized} \\ \text{DeepHit} & 0.66 \pm 0.02 \\ \text{CoxPH} & 0.66 \pm 0.01 \\ \text{CoxCC} & 0.63 \pm 0.02 \\ \end{array}$		

		$(\epsilon = 5.4, \delta = 10^{-3})$		$(\epsilon = 8.9, \delta = 10^{-3})$		
Metric	Model	DPFed	$\mathrm{DPFed}_{\mathrm{post}}$	DPFed	$\mathrm{DPFed}_{\mathrm{post}}$	
	DeepHit	0.47 ± 0.03	0.56 ± 0.04	0.54 ± 0.03	0.59 ± 0.03	
C-index	CoxPH	0.45 ± 0.70	$\boldsymbol{0.62 \pm 0.02}$	0.47 ± 0.05	$\boldsymbol{0.64 \pm 0.03}$	
↑	CoxCC	0.58 ± 0.05	$\boldsymbol{0.61 \pm 0.02}$	0.62 ± 0.02	$\boldsymbol{0.64 \pm 0.03}$	
	CoxTime	0.57 ± 0.07	$\boldsymbol{0.62 \pm 0.02}$	0.61 ± 0.03	$\boldsymbol{0.63 \pm 0.02}$	

ClientUpdate (k, \mathbf{w})

for client k

for
$$i = 1, ..., E$$

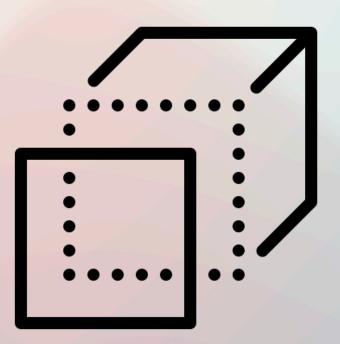
for local batches b

$$\mathbf{w} \leftarrow \mathbf{w} - \eta \nabla l(b; \mathbf{w})$$

return w to server

Validating (& Testing) Challenge

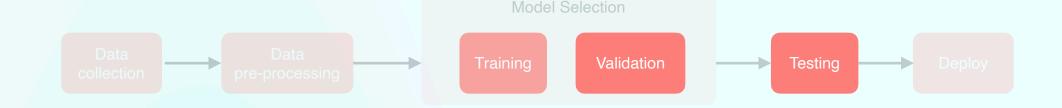
Slow process



Require a separate test set for each client

Benchmark

Validating (& Testing) Challenge



Slow process

Require a separate test set for each client

Benchmark

Neural Architecture Search

Hieu Pham, et al. Efficient Neural Architecture Search via Parameter Sharing. ICML 2018

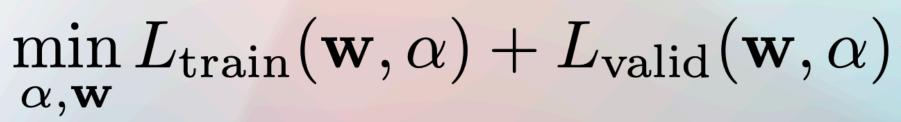
Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Milenas: Efficient neural architecture

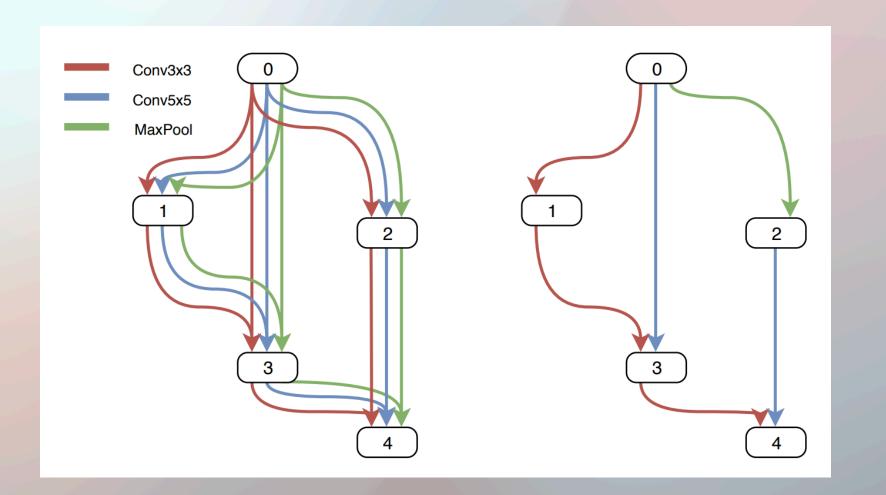
Hanxiao Liu, Karen Simonyan, Yiming Yang. DARTS: Differentiable Architecture Search. ICLR

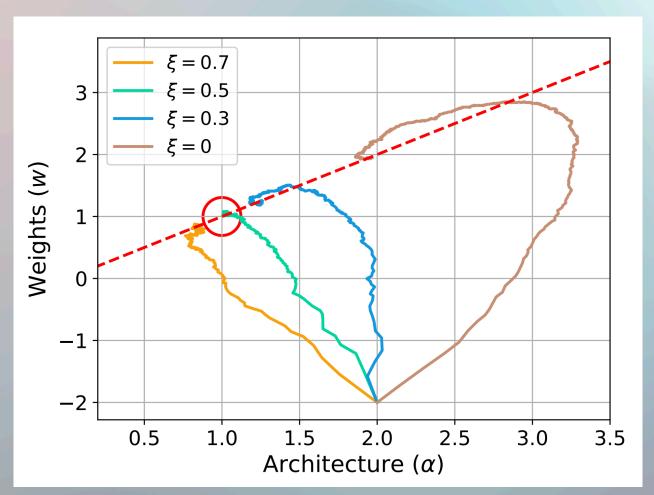
A promising direction for federated model selection archive mixed-level reformulation. CVPR 2020

 $\min_{\alpha} L_{\text{valid}}(\mathbf{w}, \alpha)$ s.t. $\mathbf{w} \in \arg\min_{\mathbf{u}} L_{\text{train}}(\mathbf{u}, \alpha)$ "Defines" an architecture

Possibly weighted by an hyper-parameter λ





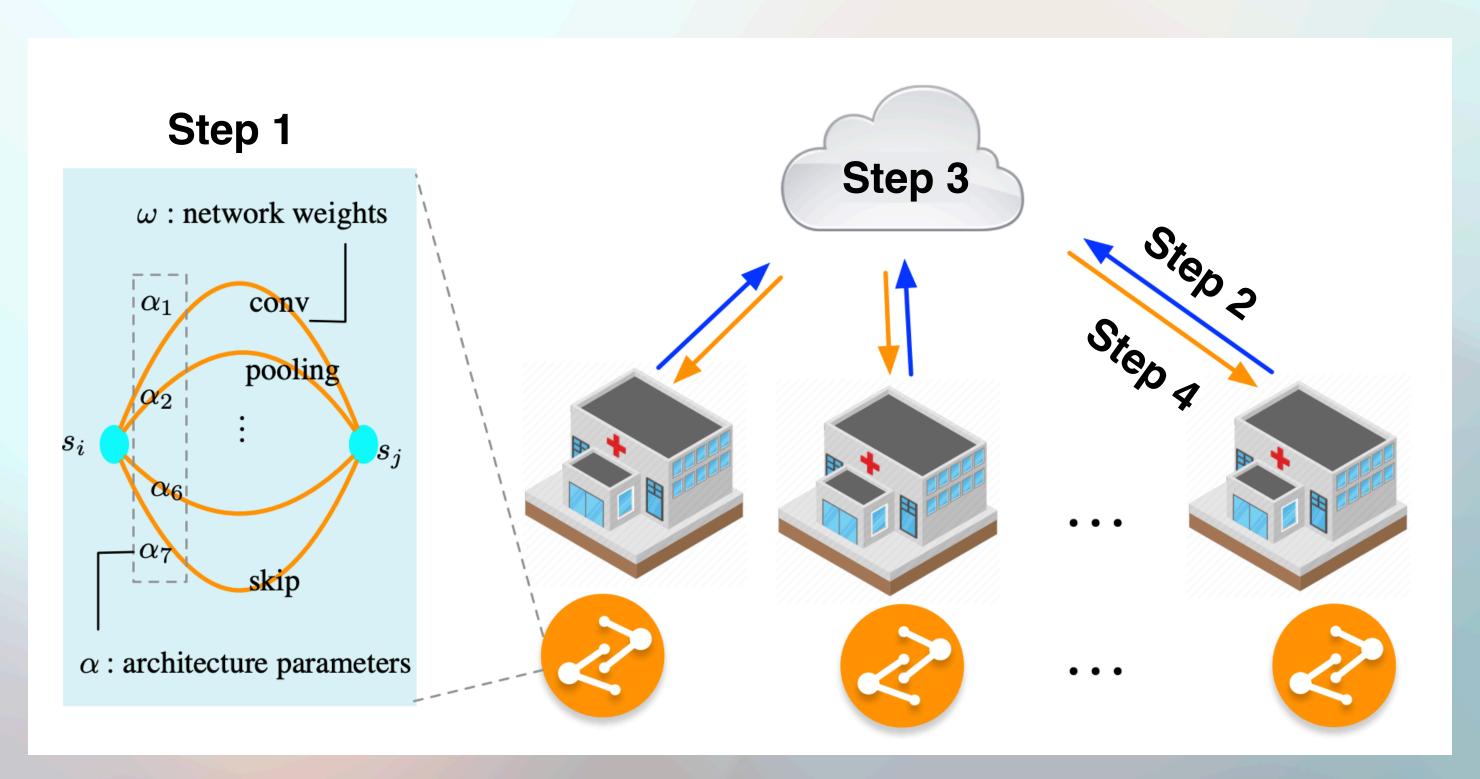


FedNAS

He, et al. FedNAS: Federated Deep Learning via Neural Architecture Search. CVPR 2020 Workshop on Neural Architecture Search and Beyond for Representation Learning

Federated application of gradient-based NAS

He, et al. MiLeNAS: Efficient Neural Architecture Search via Mixed-Level Reformulation. CVPR 2020

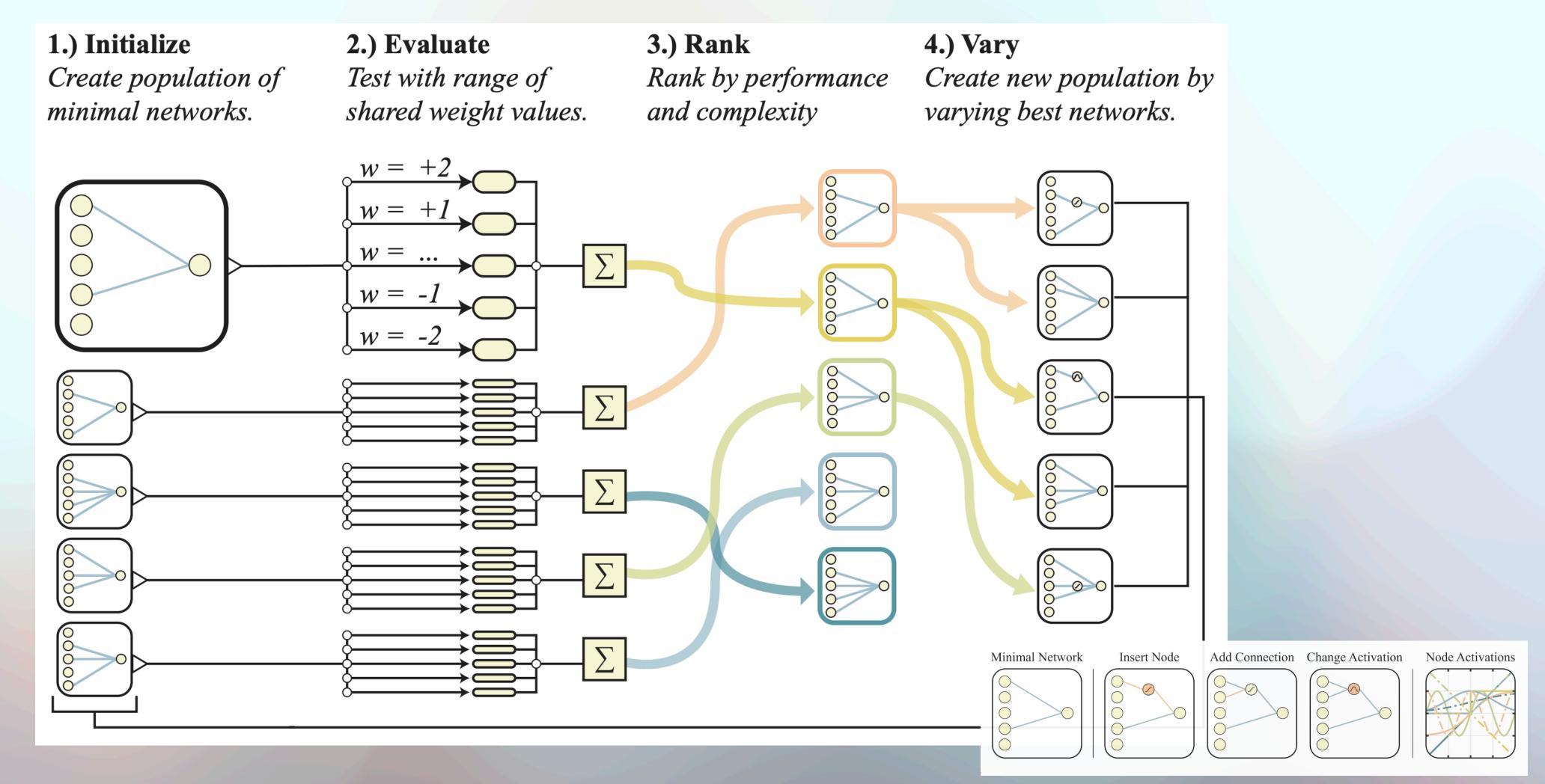


- Local search (architecture + parameters),
 via stochastic gradient descent
- 2. Clients send the gradients to the server for both architectural parameters and network parameters
- 3. Server merges the gradients
- 4. Server sends the updated parameters to the clients

Weight Agnostic NAS

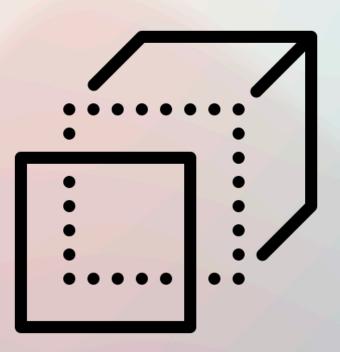
Adam Gaier, David Ha. Weight Agnostic Neural Networks. NeurIPS 2019

A promising direction to speed up federated NAS



Validating (& Testing) Challenge

Slow process



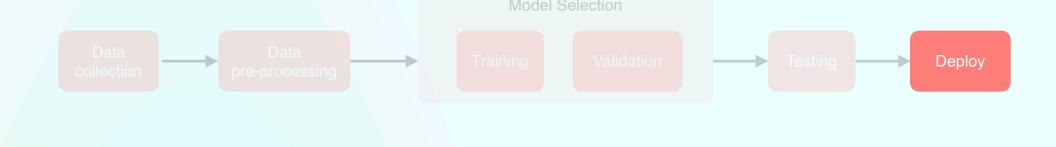
Require a separate test set for each client

Benchmark

Federated Learning AMple Benchmark of Your cross-silo strategies

Dataset	Fed-Camelyon16	Fed-LIDC-IDRI	Fed-IXI	Fed-TCGA-BRCA	Fed-KITS2019	Fed-ISIC2019	Fed-Heart-Disease
Input (x)	Slides	CT-scans	T1WI	Patient info.	CT-scans	Dermoscopy	Patient info.
Preprocessing	Matter extraction + tiling	Patch Sampling	Registration	None	Patch Sampling	Various image transforms	Removing missing data
Task type	binary classification	3D segmentation	3D segmentation	survival	3D segmentation	multi-class classification	binary classification
Prediction (y)	Tumor on slide	Lung Nodule Mask	Brain mask	Risk of death	Kidney and tumor masks	Melanoma class	Heart disease
Center extraction	Hospital	Scanner Manufacturer	Hospital	Group of Hospitals	Group of Hospitals	Hospital	Hospital
Thumbnails				1.0 — KM Estimate for OS 0.8 Allique 0.5 0.2 0.2 0.2 0.2 0.2 0.3 0.4 0.0 0.0 0.0 0.0 0.0 0.0	C		32,1,1,95,0,?,0,127,0,.7,1,?,?,1 34,1,4,115,0,?,?,154,0,.2,1,?,?,1 35,1,4,?,0,?,0,130,1,?,?,?,7,3 36,1,4,110,0,?,0,125,1,1,2,?,6,1 38,0,4,105,0,?,0,166,0,2,8,1,?,?,2 38,0,4,110,0,0,0,156,0,0,2,?,3,1 38,1,3,100,0,?,0,179,0,-1.1,1,?,?,0 38,1,3,115,0,0,0,128,1,0,2,?,7,1 38,1,4,135,0,?,0,150,0,0,?,?,3,2
Original paper	Litjens <i>et al.</i> 2018	Armato <i>et al.</i> 2011	Perez <i>et al.</i> 2021	Liu <i>et al.</i> 2018	Heller <i>et al.</i> 2019	Tschandl <i>et al.</i> 2018 / Codella <i>et al.</i> 2017 / Combalia <i>et al.</i> 2019	Janosi <i>et al.</i> 1988
# clients	2	5	3	5	6	5	4
# examples	399	1,018	566	1, 088	96	23, 247	740
# examples per center	239, 150	670, 205, 69, 74	311, 181, 74	311, 196, 206, 162 51	12, 14, 12, 12, 16, 30	12413, 3954, 3363, 225 819, 439	303, 261, 46, 130
Model	DeepMIL [66]	Vnet [100, 102]	3D U-net [25]	Cox Model [33]	nnU-Net [69]	efficientnet [119] + linear layer	Logistic Regression
Metric	AUC	DICE	DICE	C-index	DICE	Balanced Accuracy	Accuracy
Size	50G (850G total)	115G	444M	115K	54G	9G	40K
Image resolution	0.5 μm / pixel	\sim 1.0 × 1.0 × 1.0 mm / voxel	\sim 1.0 × 1.0 × 1.0 mm / voxel	NA	\sim 1.0 × 1.0 × 1.0 mm / voxel	\sim 0.02 mm / pixel	NA
Input dimension	10, 000 x 2048	128 x 128 x 128	48 x 60 x 48	39	64 x 192 x 192	200 x 200 x 3	13

Deploying a FL system Challenges

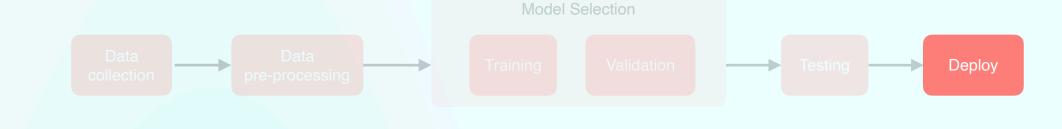


Framework

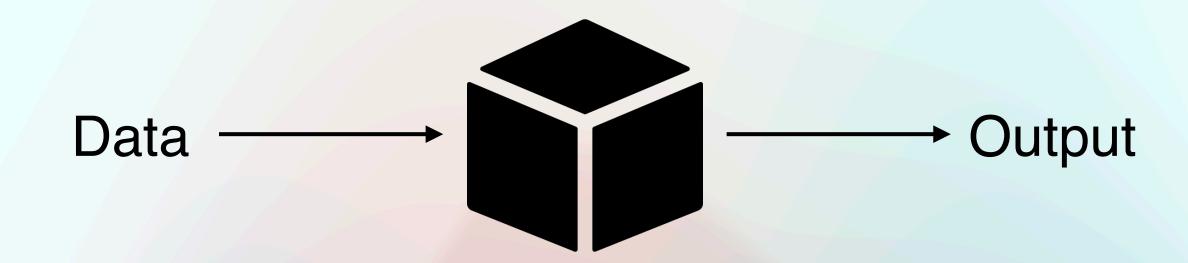
Fairness

Explainability/
Interpretability

Deploying a FL system Challenges



Interpretability Challenge

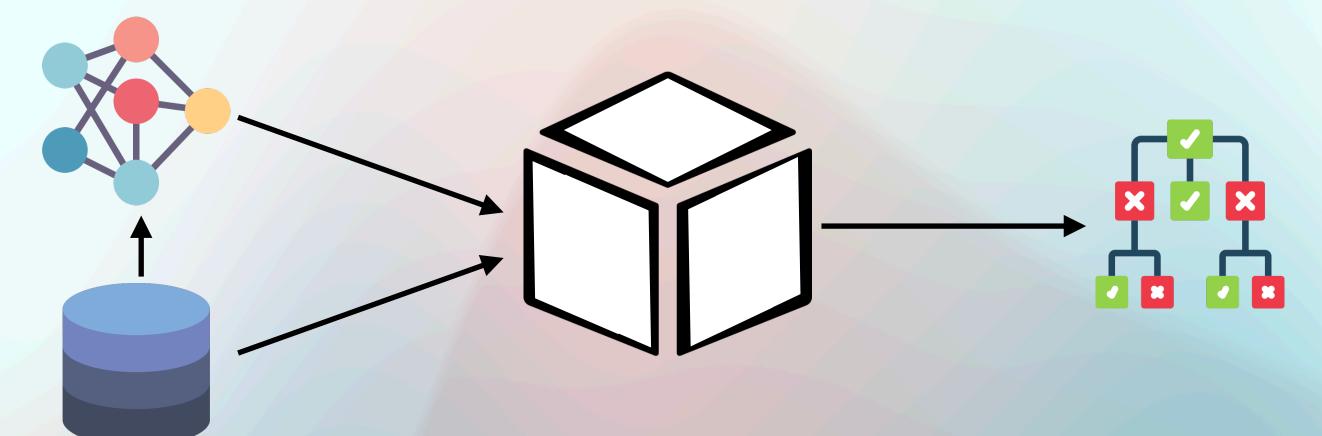


- Neural network models are generally hard to interpret (exceptions could be made for images)
- In medical applications, decisions affect the lives of human beings and a black-box machines cannot be blindly trusted!

Interpretability

Research directions

Client-side surrogate models (model agnostic)



Example-based explanations, e.g., counterfactual explanation or k-NN

Extend the FL framework to non gradient-based methods

Non gradient-based FL

Federated Adaboost

Roberto Esposito, Mirko Polato, Marco Aldinucci. Boosting Methods for Federated Learning. SEBD 2023

Roberto Esposito, **Mirko Polato**, Marco Aldinucci. Boosting the federation: Cross-silo federated learning without gradient descent. IJCNN 2022

Gianluca Mittone, Walter Riviera, Iacopo Colonnelli, Robert Birke, Marco Aldinucci. Model-agnostic Federated Learning. Euro-Par 2023

THE LANCET

THE LANCET

Volume 397, Issue 10270, 16-22 January 2021, Pages 199-207

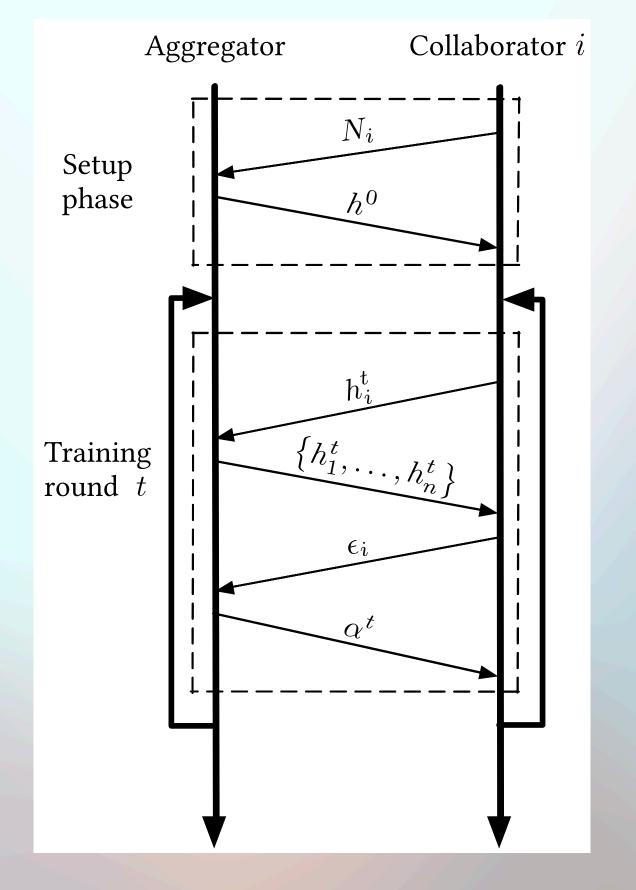
Articles

Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets

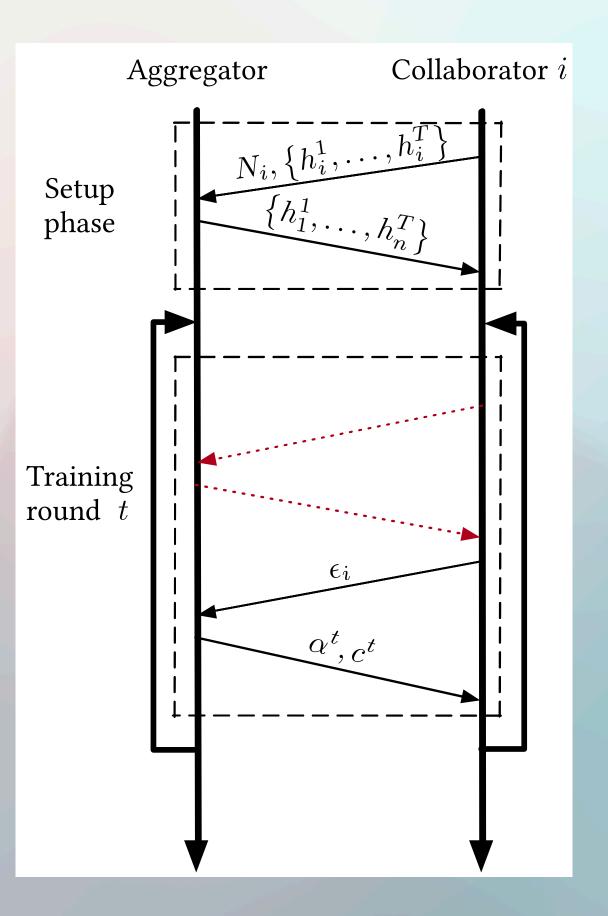
Fabrizio D'Ascenzo MD a b A Maria Ovidio De Filippo MD b b, Guglielmo Gallone MD b b, Gianluca Mittone MSc c, Prof Marco Agostino Deriu PhD p, Mario Iannaccone MD i, Albert Ariza-Solé MD f, Prof Christoph Liebetrau MD g, Sergio Manzano-Fernández MD h, Giorgio Quadri MD , Tim Kinnaird MD e, Prof Gianluca Campo MD o, Jose Paulo Simao Henriques MD j, James M Hughes PhD n, Alberto Dominguez-Rodriguez MD m, Prof Marco Aldinucci PhD c, Prof Umberto Morbiducci PhD p, Prof Giuseppe Patti MD k, Sergio Raposeiras-Roubin MD^d, Emad Abu-Assi MD^d... Yasir Arfat

Federated Adaboost

Algorithms overview



Distboost.F

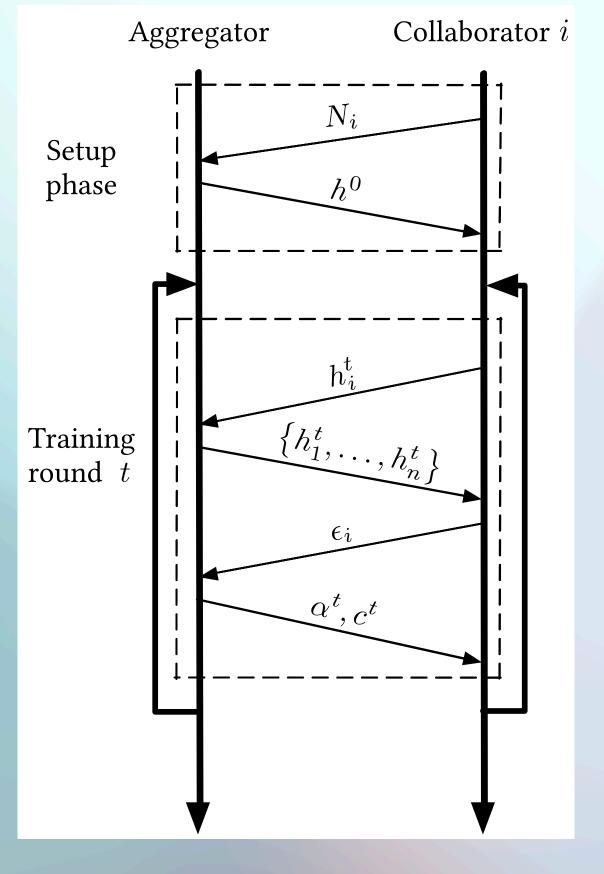


Preweak.F

Roberto Esposito, **Mirko Polato**, Marco Aldinucci. Boosting Methods for Federated Learning. SEBD 2023

Roberto Esposito, Mirko Polato, Marco Aldinucci. Boosting the federation: rto Esposito, **Mirko Polato**, Marco Aldinucci. Boosting the federation: Cross-silo federated learning without gradient descent. IJCNN 2022

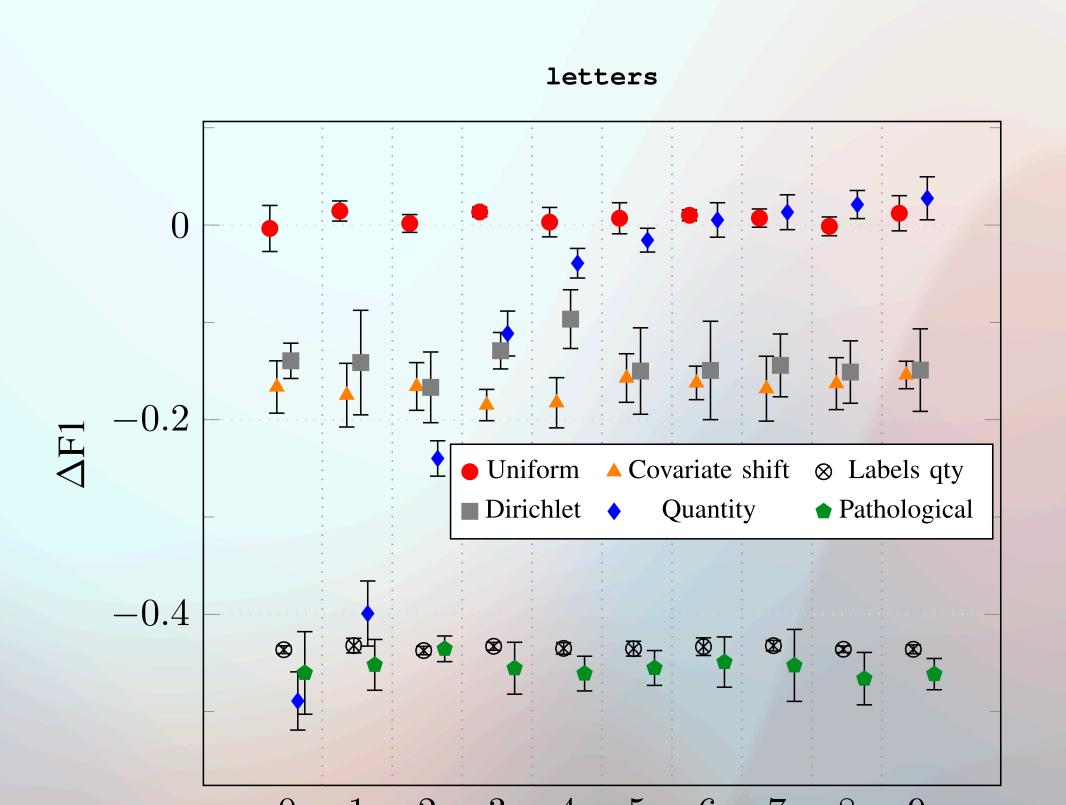
Gianluca Mittone, Walter Riviera, Iacopo Colonnelli, Robert Birke, Marco Mittone, Walter Riviera, Iacopo Colonnelli, Robert Birke, Marco Aldinucci. Model-agnostic Federated Learning. Euro-Par 2023



Adaboost.F

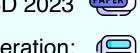
Federated Adaboost

Results overview

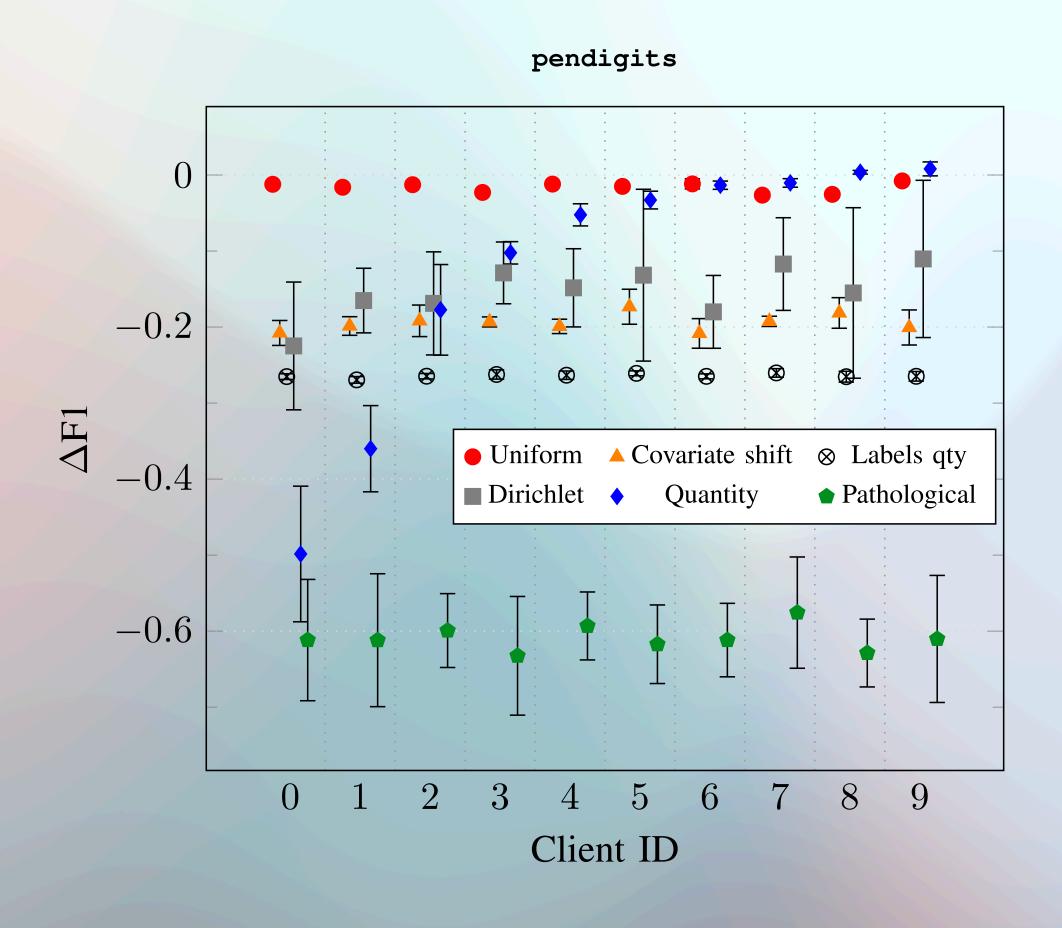


Client ID

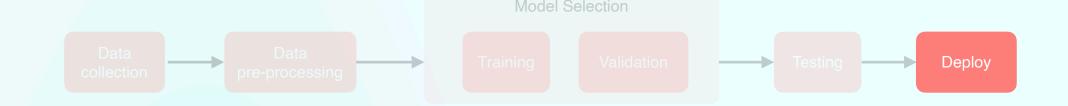




Roberto Esposito, **Mirko Polato**, Marco Aldinucci. Boosting the federation: Cross-silo federated learning without gradient descent. IJCNN 2022



Deploying a FL system Challenges



Framework

Fairness

Explainability/
Interpretability

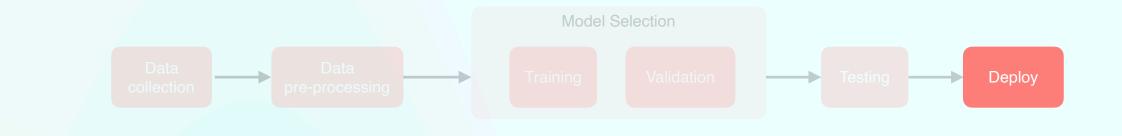
Fairness Challenges

Collaboration



Performance

Fairness Challenges



Bias

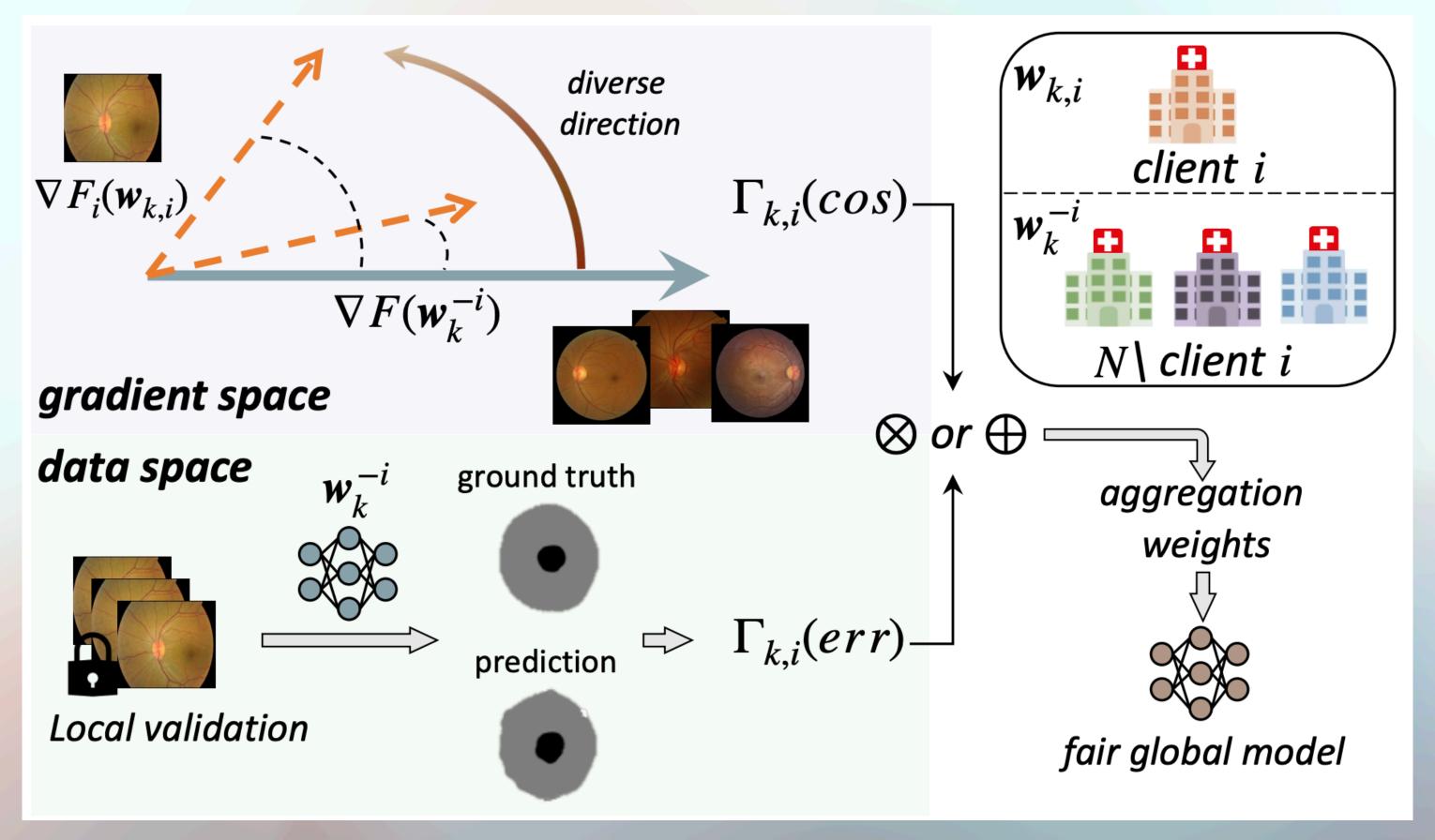
Collaboration

Performance

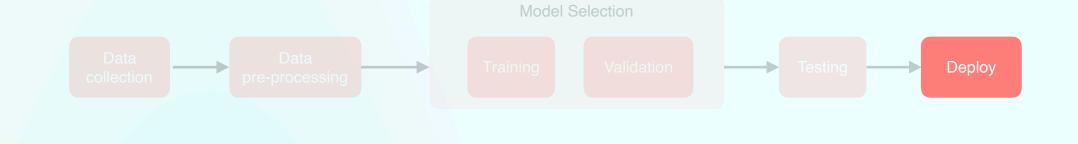
Fairness

Contribution and performance fairness

FedCE



Deploying a FL system Challenges

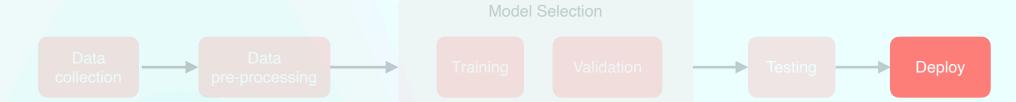


Framework

Fairness

Explainability/
Interpretability

FL frameworks



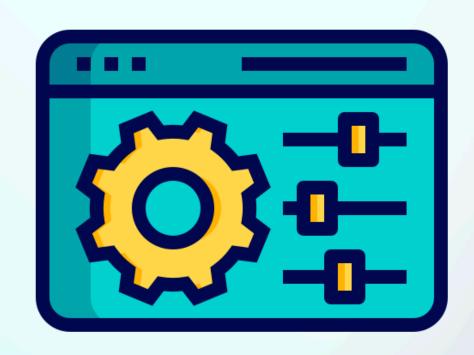
Many promising open source frameworks

...and many others

FL frameworks

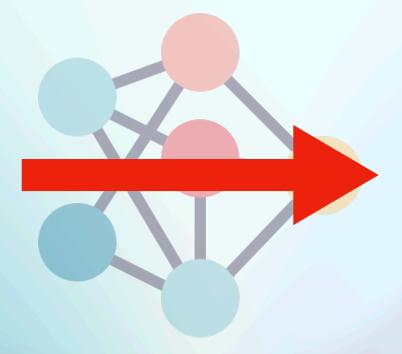
Research directions





Configurability

Extensibility

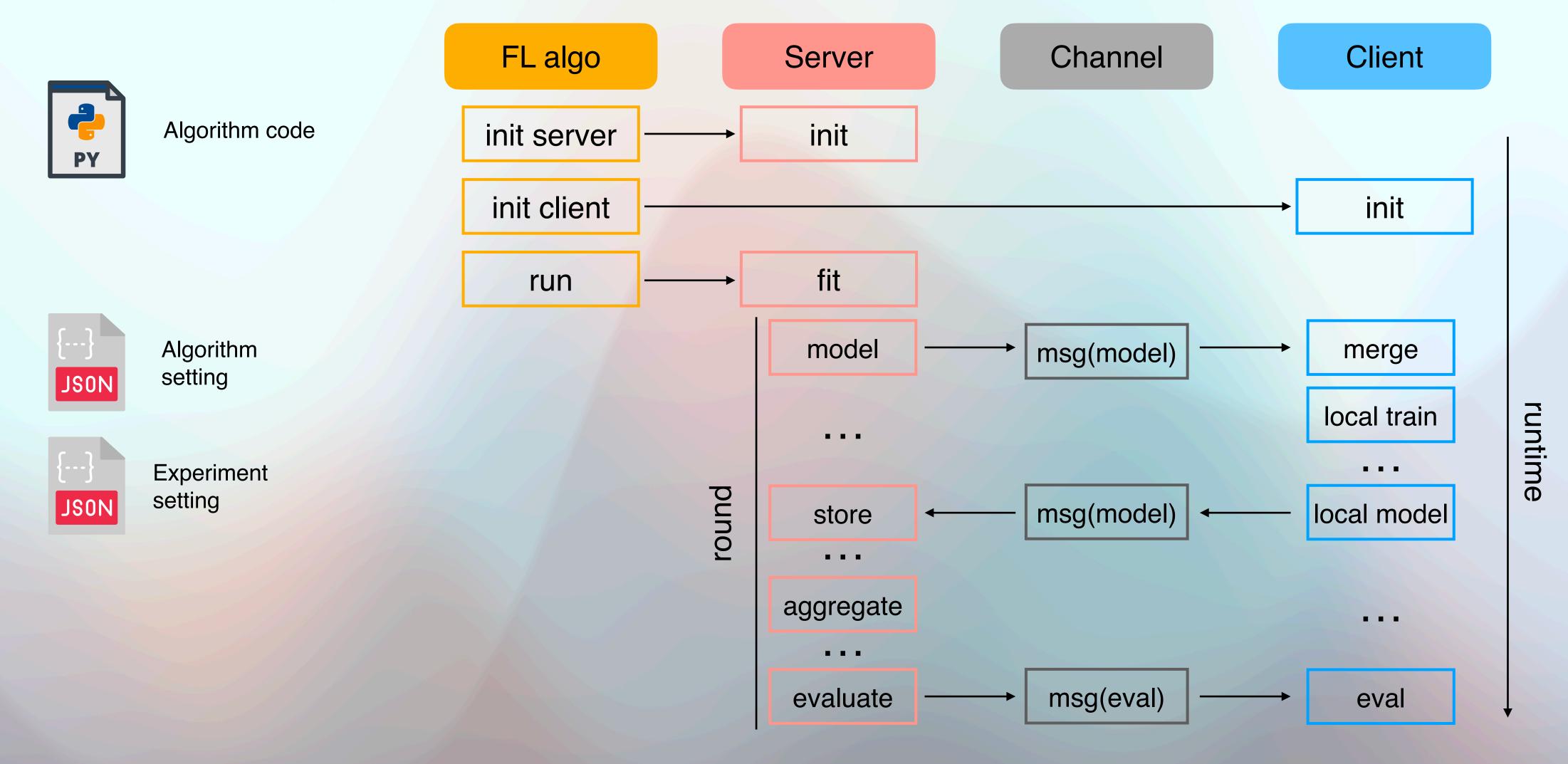


Beyond NN (gradient descent-based)

FL-bench (to be released soon...)

Mirko Polato, Roberto Esposito et al. FL-Bench https://github.com/makgyver/fl-bench/

Easy-to-configure & extend framework for simulated FL



FL-bench (to be released soon...) Configuration files

Experiment setting

```
"protocol": {
    "n_clients": 100,
    "n_rounds": 200,
    "eligible_perc": 0.1
"data": {
    "dataset": "mnist",
    "standardize": false,
   "distribution": "iid",
    "validation_split": 0.0,
    "sampling_perc": 1.0
"exp": {
    "seed": 5,
    "device": "auto",
    "checkpoint": {
        "save": false,
        "load": false,
        "path": "./checkpoints/myckp.pt"
"log": {
    "logger": "local",
    "wandb_params": {
        "project": "my-proj",
       "entity": "my-entity",
        "tags": ["my-tag"]
```

Algorithm (FedAvg) setting

```
"name": "fedavg",
         "hyperparameters": {
             "server": {
             },
             "client": {
                 "batch_size": 50,
                 "n_epochs": 10,
                 "loss": "CrossEntropyLoss",
10
                  "optimizer": {
                     "lr": 0.1,
                      "scheduler_kwargs": {
                          "step_size": 1,
14
                          "gamma": 1
15
16
18
             "model": "MLP"
19
20
```

Thank you!

An incomplete list of my colleagues...

Mirko Polato
Assistant Professor
University of Torino
mirko.polato@unito.it

Roberto Esposito
Associate Professor
University of Torino

Marco Aldinucci
Full Professor
University of Torino

Samuele Fonio
PhD Student
University of Torino

Bruno Casella
PhD Student
University of Torino

Gianluca Mittone
PhD Student
University of Torino